3.28.44 \(\int \frac {(1-2 x)^{3/2}}{(2+3 x)^{7/2} (3+5 x)^{3/2}} \, dx\) [2744]

3.28.44.1 Optimal result
3.28.44.2 Mathematica [C] (verified)
3.28.44.3 Rubi [A] (verified)
3.28.44.4 Maple [A] (verified)
3.28.44.5 Fricas [C] (verification not implemented)
3.28.44.6 Sympy [F(-1)]
3.28.44.7 Maxima [F]
3.28.44.8 Giac [F]
3.28.44.9 Mupad [F(-1)]

3.28.44.1 Optimal result

Integrand size = 28, antiderivative size = 191 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^{7/2} (3+5 x)^{3/2}} \, dx=\frac {14 \sqrt {1-2 x}}{15 (2+3 x)^{5/2} \sqrt {3+5 x}}+\frac {44 \sqrt {1-2 x}}{5 (2+3 x)^{3/2} \sqrt {3+5 x}}+\frac {6116 \sqrt {1-2 x}}{35 \sqrt {2+3 x} \sqrt {3+5 x}}-\frac {36968 \sqrt {1-2 x} \sqrt {2+3 x}}{21 \sqrt {3+5 x}}+\frac {36968}{35} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )+\frac {1112}{35} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right ) \]

output
36968/105*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+1 
112/105*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+14/ 
15*(1-2*x)^(1/2)/(2+3*x)^(5/2)/(3+5*x)^(1/2)+44/5*(1-2*x)^(1/2)/(2+3*x)^(3 
/2)/(3+5*x)^(1/2)+6116/35*(1-2*x)^(1/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2)-36968/ 
21*(1-2*x)^(1/2)*(2+3*x)^(1/2)/(3+5*x)^(1/2)
 
3.28.44.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 7.49 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.52 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^{7/2} (3+5 x)^{3/2}} \, dx=\frac {2}{105} \left (-\frac {3 \sqrt {1-2 x} \left (233897+1071882 x+1636038 x^2+831780 x^3\right )}{(2+3 x)^{5/2} \sqrt {3+5 x}}-4 i \sqrt {33} \left (4621 E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-4760 \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right )\right ) \]

input
Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^(7/2)*(3 + 5*x)^(3/2)),x]
 
output
(2*((-3*Sqrt[1 - 2*x]*(233897 + 1071882*x + 1636038*x^2 + 831780*x^3))/((2 
 + 3*x)^(5/2)*Sqrt[3 + 5*x]) - (4*I)*Sqrt[33]*(4621*EllipticE[I*ArcSinh[Sq 
rt[9 + 15*x]], -2/33] - 4760*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])) 
)/105
 
3.28.44.3 Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.07, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {109, 27, 169, 27, 169, 27, 169, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{3/2}}{(3 x+2)^{7/2} (5 x+3)^{3/2}} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {2}{15} \int \frac {11 (11-15 x)}{\sqrt {1-2 x} (3 x+2)^{5/2} (5 x+3)^{3/2}}dx+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {22}{15} \int \frac {11-15 x}{\sqrt {1-2 x} (3 x+2)^{5/2} (5 x+3)^{3/2}}dx+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {22}{15} \left (\frac {2}{21} \int \frac {21 (79-90 x)}{2 \sqrt {1-2 x} (3 x+2)^{3/2} (5 x+3)^{3/2}}dx+\frac {6 \sqrt {1-2 x}}{(3 x+2)^{3/2} \sqrt {5 x+3}}\right )+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {22}{15} \left (\int \frac {79-90 x}{\sqrt {1-2 x} (3 x+2)^{3/2} (5 x+3)^{3/2}}dx+\frac {6 \sqrt {1-2 x}}{(3 x+2)^{3/2} \sqrt {5 x+3}}\right )+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {22}{15} \left (\frac {2}{7} \int \frac {5 (674-417 x)}{\sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}}dx+\frac {834 \sqrt {1-2 x}}{7 \sqrt {3 x+2} \sqrt {5 x+3}}+\frac {6 \sqrt {1-2 x}}{(3 x+2)^{3/2} \sqrt {5 x+3}}\right )+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {22}{15} \left (\frac {10}{7} \int \frac {674-417 x}{\sqrt {1-2 x} \sqrt {3 x+2} (5 x+3)^{3/2}}dx+\frac {834 \sqrt {1-2 x}}{7 \sqrt {3 x+2} \sqrt {5 x+3}}+\frac {6 \sqrt {1-2 x}}{(3 x+2)^{3/2} \sqrt {5 x+3}}\right )+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {22}{15} \left (\frac {10}{7} \left (-\frac {2}{11} \int \frac {3 (9242 x+5851)}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {9242 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )+\frac {834 \sqrt {1-2 x}}{7 \sqrt {3 x+2} \sqrt {5 x+3}}+\frac {6 \sqrt {1-2 x}}{(3 x+2)^{3/2} \sqrt {5 x+3}}\right )+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {22}{15} \left (\frac {10}{7} \left (-\frac {3}{11} \int \frac {9242 x+5851}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {9242 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )+\frac {834 \sqrt {1-2 x}}{7 \sqrt {3 x+2} \sqrt {5 x+3}}+\frac {6 \sqrt {1-2 x}}{(3 x+2)^{3/2} \sqrt {5 x+3}}\right )+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {22}{15} \left (\frac {10}{7} \left (-\frac {3}{11} \left (\frac {1529}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {9242}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {9242 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )+\frac {834 \sqrt {1-2 x}}{7 \sqrt {3 x+2} \sqrt {5 x+3}}+\frac {6 \sqrt {1-2 x}}{(3 x+2)^{3/2} \sqrt {5 x+3}}\right )+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {22}{15} \left (\frac {10}{7} \left (-\frac {3}{11} \left (\frac {1529}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {9242}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {9242 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )+\frac {834 \sqrt {1-2 x}}{7 \sqrt {3 x+2} \sqrt {5 x+3}}+\frac {6 \sqrt {1-2 x}}{(3 x+2)^{3/2} \sqrt {5 x+3}}\right )+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {22}{15} \left (\frac {10}{7} \left (-\frac {3}{11} \left (-\frac {278}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {9242}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {9242 \sqrt {1-2 x} \sqrt {3 x+2}}{11 \sqrt {5 x+3}}\right )+\frac {834 \sqrt {1-2 x}}{7 \sqrt {3 x+2} \sqrt {5 x+3}}+\frac {6 \sqrt {1-2 x}}{(3 x+2)^{3/2} \sqrt {5 x+3}}\right )+\frac {14 \sqrt {1-2 x}}{15 (3 x+2)^{5/2} \sqrt {5 x+3}}\)

input
Int[(1 - 2*x)^(3/2)/((2 + 3*x)^(7/2)*(3 + 5*x)^(3/2)),x]
 
output
(14*Sqrt[1 - 2*x])/(15*(2 + 3*x)^(5/2)*Sqrt[3 + 5*x]) + (22*((6*Sqrt[1 - 2 
*x])/((2 + 3*x)^(3/2)*Sqrt[3 + 5*x]) + (834*Sqrt[1 - 2*x])/(7*Sqrt[2 + 3*x 
]*Sqrt[3 + 5*x]) + (10*((-9242*Sqrt[1 - 2*x]*Sqrt[2 + 3*x])/(11*Sqrt[3 + 5 
*x]) - (3*((-9242*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35 
/33])/5 - (278*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33 
])/5))/11))/7))/15
 

3.28.44.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.28.44.4 Maple [A] (verified)

Time = 1.36 (sec) , antiderivative size = 271, normalized size of antiderivative = 1.42

method result size
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {14 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{135 \left (\frac {2}{3}+x \right )^{3}}-\frac {202 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{45 \left (\frac {2}{3}+x \right )^{2}}-\frac {25418 \left (-30 x^{2}-3 x +9\right )}{105 \sqrt {\left (\frac {2}{3}+x \right ) \left (-30 x^{2}-3 x +9\right )}}-\frac {46808 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{735 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {73936 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{735 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {110 \left (-30 x^{2}-5 x +10\right )}{\sqrt {\left (x +\frac {3}{5}\right ) \left (-30 x^{2}-5 x +10\right )}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(271\)
default \(\frac {2 \sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (161568 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x^{2} \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-166356 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x^{2} \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}+215424 \sqrt {5}\, \sqrt {7}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}-221808 \sqrt {5}\, \sqrt {7}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right ) x \sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}+71808 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-73936 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-4990680 x^{4}-7320888 x^{3}-1523178 x^{2}+1812264 x +701691\right )}{105 \left (2+3 x \right )^{\frac {5}{2}} \left (10 x^{2}+x -3\right )}\) \(314\)

input
int((1-2*x)^(3/2)/(2+3*x)^(7/2)/(3+5*x)^(3/2),x,method=_RETURNVERBOSE)
 
output
(-(-1+2*x)*(3+5*x)*(2+3*x))^(1/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2 
)*(-14/135*(-30*x^3-23*x^2+7*x+6)^(1/2)/(2/3+x)^3-202/45*(-30*x^3-23*x^2+7 
*x+6)^(1/2)/(2/3+x)^2-25418/105*(-30*x^2-3*x+9)/((2/3+x)*(-30*x^2-3*x+9))^ 
(1/2)-46808/735*(10+15*x)^(1/2)*(21-42*x)^(1/2)*(-15*x-9)^(1/2)/(-30*x^3-2 
3*x^2+7*x+6)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/2))-73936/735*(10+ 
15*x)^(1/2)*(21-42*x)^(1/2)*(-15*x-9)^(1/2)/(-30*x^3-23*x^2+7*x+6)^(1/2)*( 
-7/6*EllipticE((10+15*x)^(1/2),1/35*70^(1/2))+1/2*EllipticF((10+15*x)^(1/2 
),1/35*70^(1/2)))-110*(-30*x^2-5*x+10)/((x+3/5)*(-30*x^2-5*x+10))^(1/2))
 
3.28.44.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.67 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^{7/2} (3+5 x)^{3/2}} \, dx=-\frac {2 \, {\left (135 \, {\left (831780 \, x^{3} + 1636038 \, x^{2} + 1071882 \, x + 233897\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - 314024 \, \sqrt {-30} {\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + 831780 \, \sqrt {-30} {\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )\right )}}{4725 \, {\left (135 \, x^{4} + 351 \, x^{3} + 342 \, x^{2} + 148 \, x + 24\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^(7/2)/(3+5*x)^(3/2),x, algorithm="fricas")
 
output
-2/4725*(135*(831780*x^3 + 1636038*x^2 + 1071882*x + 233897)*sqrt(5*x + 3) 
*sqrt(3*x + 2)*sqrt(-2*x + 1) - 314024*sqrt(-30)*(135*x^4 + 351*x^3 + 342* 
x^2 + 148*x + 24)*weierstrassPInverse(1159/675, 38998/91125, x + 23/90) + 
831780*sqrt(-30)*(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)*weierstrassZet 
a(1159/675, 38998/91125, weierstrassPInverse(1159/675, 38998/91125, x + 23 
/90)))/(135*x^4 + 351*x^3 + 342*x^2 + 148*x + 24)
 
3.28.44.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^{7/2} (3+5 x)^{3/2}} \, dx=\text {Timed out} \]

input
integrate((1-2*x)**(3/2)/(2+3*x)**(7/2)/(3+5*x)**(3/2),x)
 
output
Timed out
 
3.28.44.7 Maxima [F]

\[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^{7/2} (3+5 x)^{3/2}} \, dx=\int { \frac {{\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{{\left (5 \, x + 3\right )}^{\frac {3}{2}} {\left (3 \, x + 2\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^(7/2)/(3+5*x)^(3/2),x, algorithm="maxima")
 
output
integrate((-2*x + 1)^(3/2)/((5*x + 3)^(3/2)*(3*x + 2)^(7/2)), x)
 
3.28.44.8 Giac [F]

\[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^{7/2} (3+5 x)^{3/2}} \, dx=\int { \frac {{\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{{\left (5 \, x + 3\right )}^{\frac {3}{2}} {\left (3 \, x + 2\right )}^{\frac {7}{2}}} \,d x } \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^(7/2)/(3+5*x)^(3/2),x, algorithm="giac")
 
output
integrate((-2*x + 1)^(3/2)/((5*x + 3)^(3/2)*(3*x + 2)^(7/2)), x)
 
3.28.44.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^{7/2} (3+5 x)^{3/2}} \, dx=\int \frac {{\left (1-2\,x\right )}^{3/2}}{{\left (3\,x+2\right )}^{7/2}\,{\left (5\,x+3\right )}^{3/2}} \,d x \]

input
int((1 - 2*x)^(3/2)/((3*x + 2)^(7/2)*(5*x + 3)^(3/2)),x)
 
output
int((1 - 2*x)^(3/2)/((3*x + 2)^(7/2)*(5*x + 3)^(3/2)), x)